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Direct numerical simulation of wall turbulent flows with
microbubbles
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SUMMARY

The marker-density-function (MDF) method has been developed to conduct direct numerical simulation
(DNS) for bubbly flows. The method is applied to turbulent bubbly channel flows to elucidate the
interaction between bubbles and wall turbulence. The simulation is designed to clarify the structure of the
turbulent boundary layer containing microbubbles and the mechanism of frictional drag reduction. It is
deduced from the numerical tests that the interaction between bubbles and wall turbulence depends on
the Weber and Froude numbers. The reduction of the frictional resistance on the wall is attained and its
mechanism is explained from the modulation of the three-dimensional structure of the turbulent flow.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Bubbly flows have been considered as an important research problem in engineering which
have been solved by experimental and numerical approaches. The bubble–turbulence interac-
tion has been one of the principal problems. Experimental devices, such as particle image
velocimetry (PIV), have recently become useful tools for observing the complicated bubble
motions in a turbulent flow. The information obtained by PIV is, however, very limited and
the detailed flow structure around bubbles cannot be clarified completely. Hence the numerical
approach can be useful for the elucidation of the structure of the flows.

There exists many experimental reports about the reduction of frictional resistance by
injecting microbubbles into a turbulent boundary layer on a flat plate. Bogdevich et al. [1] have
reported that the integrated skin friction on a flat plate in a cavitation tube was reduced for
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all tunnel velocities ranging between 4 and 11 m s−1. The maximum reduction rate was more
than 80 per cent. It was also indicated that the peak of the bubble concentration in the
turbulent boundary layer is closer to the wall and increases as the flow velocity increases.
Madavan et al. [2,3] followed their work and obtained similar results. The reduction rate
strongly depends on the plate orientation to the gravitational direction. The reduction by the
plate-on-top orientation is considerably greater than that by the plate-on-bottom orientation.
The buoyancy effects seem to be larger at lower speeds. Spectral measurements indicated that
the high frequency component of the turbulence is lost and the turbulence energy appears to
shift toward lower frequencies. They also recorded the sizes of bubble diameter, which range
from 400–600 mm at low speed (4.6 m s−1) to 200–300 mm at high speed (10.7 m s−1) and
concluded that the bubble size increases with airflow rate and decreases with flow velocity. It
appears that bubble coalescence occurs, resulting in larger bubbles. Kato et al. [4] and Guin [5]
conducted experiments of turbulent flow in a channel to confirm the drag reduction phe-
nomenon by injecting pre-mixed air-bubbly water into the turbulent boundary layer on a
channel wall with a channel height of 10 mm. The bubble sizes were around 300–700 mm at
flow velocity ranging from 5 to 10 m s−1 for drag reduction.

When the sizes of bubbles in a turbulent boundary layer are greater than about 1 mm, drag
reduction is not attained any more. Lance and Bataille [6] conducted experiments of a bubbly,
grid-generated turbulent flow, in which the mean bubble size was about 5 mm. It was found
that the turbulent kinetic energy increases with the void fraction, and if the void fraction is
greater than a critical value of about 1 per cent, the turbulent energy is strongly amplified due
to the hydrodynamic interactions between the bubbles. The amplification becomes greater as
the basic grid-generated turbulence increases. Marié et al. [7] carried out experiments on a
turbulent boundary layer flow on a vertical flat plat in the presence of bubbles of 3.5 mm in
diameter, corresponding to a void fraction ranging from 0 to 1.5 per cent, and about 6 mm in
diameter, corresponding to a void fraction ranging from 3 to 5.5 per cent. It was indicated that
the turbulence intensity is amplified as the peak value of the void fraction near the wall
increases and the location of maximum wall production is, however, unchanged. Also it was
noticed that the turbulence intensity in the intermediate region between 30 and 200 wall units,
where the void fraction is maximum, shows no significant modifications. Another experiment
of a gas–liquid bubbly downward flow in a vertical pipe by Nakoryakov et al. [8] showed that
a slight decrease of velocity fluctuations is observed in the region between 30 and 200 wall
units when the bubble sizes are around 1 mm. From these experimental facts it is obviously
understood that the bubble size is very critical to the modification of a turbulent flow structure
and must be necessarily less than about 1 mm to attain drag reduction. If the bubbles are
greater, the hydrodynamic interaction between bubbles and basic single-phase turbulence
amplifies the total turbulence intensity.

Madavan et al. [9] carried out numerical tests on the turbulent boundary layer on a flat
plate, including the effects of microbubbles, by using a macroscopic two-fluid model approach.
The method treats the presence of microbubbles only as changes in the local time-averaged
viscosity and density without considering exact places and shapes of the microbubbles. The
results showed that the skin friction reduction is obtained due to the changes of viscosity and
density. However, since the drag reduction strongly depends on the diameter of a bubble, as
known from experiments, the assumption that the effect is due to the changes of viscosity and
density may be inappropriate.
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As is known from the above experimental and numerical studies, it is clarified that the
bubbles affect the turbulent flow structure and the bubble size and the bubble flow rate are
very important, but the detailed flow structure around bubbles and the mechanism of drag
reduction are not clarified. It should be noted, therefore, that the direct numerical simulation
(DNS) is the most possible approach to clarify the bubble–turbulence interaction and the
associated mechanism. It is noted, however, that the DNS requires a large amount of
computational resources. Taeibi-Rahni et al. [10] simulated the flow of a planar free shear
layer with cylindrical bubbles. Bunner and Tryggvason [11] conducted the three-dimensional
simulation containing 64 rising bubbles.

In the present paper, the DNS of the turbulent channel flow containing bubbles is carried
out using the marker-density-function (MDF) method. The numerical technique to avoid
bubble merging is introduced to obtain a steady state in the simulation of a bubbly-channel
flow with periodic boundary conditions. That is, we eliminate the effect of bubble merging to
the flow structure. We choose the case of microbubbles in a turbulent channel flow and
investigate the modulation of the turbulence properties, which will lead to the clarification of
the flow structure and the mechanism of drag reduction by microbubbles.

2. NUMERICAL METHOD

The numerical method in this paper has been developed for the two-phase flow. The MDF
method can handle various problems, such as wave breaking around a ship and bubbly flows
[12–15]. It was found through those applications that the method is robust and accurate. The
numerical method will be described in detail in the following.

2.1. Go6erning equations

The governing equations for the two-phase fluid flow are the following incompressible
Navier–Stokes equations and the continuity equation:

(u
(t

+ (u ·9)u= −
1
r1

9p+9 ·(2n1D)+ f (1a)

(u
(t

+ (u ·9)u= −
1
r2

9p+9 ·(2n2D)+ f (1b)

9 ·u=0 (2)

Here, subscripts ‘1’ and ‘2’ denote fluid phase 1 and 2 respectively. In the present study, ‘1’
corresponds to the outer liquid and ‘2’ to the gas inside a bubble. u is the velocity, p is the
pressure, t is the time, r is the fluid density, n is the fluid viscosity, D is the viscous stress
tensor and f is the external body force, including the gravitational acceleration. Although
surface tension is not included in these equations, it is treated in the boundary condition as a
force concentrated at the interface. For computations all variables are made dimensionless
with respect to the centerline velocity in a channel and half the channel height.
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2.2. Algorithm

The above equations for each phase are solved with the constant values of density and
viscosity for respective fluids. The finite difference method based on the marker-and-cell
(MAC)-type algorithm is used for discretization on a staggered Cartesian grid. These equa-
tions lead to an elliptic pressure equation, which is solved by the successive overrelaxation
(SOR) technique. In the vicinity of interfaces, the irregular star technique [16] is used for
considering precise interface locations. The interface is captured by the MDF method.
Before the time marching process, initial conditions of velocity, pressure and MDF are set
and bubbles are assumed to be initially spherical. During the time marching process, new
interface locations are calculated by the MDF method. The advection and diffusion terms
are calculated at every velocity point in the two phases as source terms for the Poisson
equation for pressure. First the Poisson equation for the gas phase is solved and then the
pressure in the liquid phase is solved considering the normal dynamic boundary condition
at the interface using the surface tension force and the renewed gas pressure inside a
bubble. Finally the velocity field is updated.

2.3. MDF method

2.3.1. Go6erning equation. In order to capture the interface between the two phases, the
MDF M, which is 1 in the phase 1 and 0 in the phase 2, corresponding to the outer liquid
and the gas inside a bubble respectively, is defined in the whole computational domain and
advected by the local velocity

(M
(t

+u ·9M=0 (3)

The location of the interface is defined as the surface on which the MDF takes the value
of (1+0)/2. Equation (3) fulfills the kinematic interface condition that a point on an
interface remains on it as time proceeds. The MDF literally means local density at the
center of a cell. Equation (3) is solved by a finite difference approach using the cubic-
interpolated pseudo-particle (CIP) method [17]. Although the CIP method is less diffusive
than third-order upwind schemes, the sharpness of the interface can be lost as calculations
proceed due to the inherent numerical diffusion of the method. In order to eliminate the
numerical diffusion, the MDF is re-initialized to 1 in phase 1 and 0 in phase 2, except
those neighboring values across the interface, which are retained and used for determining
the interface location. Since each fluid phase flow is solved using each constant density and
viscosity without averaging, the interface thickness is zero. However, since the bubble
volume changes a small amount within 0.1%, the small change of volume is added to or
extracted from each bubble volume to keep the initial volume.

2.3.2. Interface locations. The length to the interface point is calculated at every pressure
point in case an interface is located between the neighboring pressure points. For example,
as seen in Figure 1 the length l1 is calculated by
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Figure 1. Interface position on a rectangular grid and lengths from a pressure point to the surrounding
pressure points and interface for the irregular star technique.

l1=
(Mi, j,k−0.5)

Mi, j,k−Mi+1, j,k

Dxi+1/2 (4)

Another five lengths to the neighboring interface are evaluated in the same way if an
interface is present.

In the previous version of this method [18], as well as almost all other front-capturing and
front-tracking schemes, it is impossible that more than two interfaces of different bubbles exist
between neighboring pressure points because close interfaces are automatically merged when
they are located between neighboring pressure points. The method is modified to prevent
merging as seen in Figure 2. Different bubbles are identified by different flags for gas cells,
which will be described later, and the MDF values are retained in the re-initialization process
if the neighboring cells are in different bubbles. Also, the lengths l1 and l2 in Figure 2 are
calculated by the following equations:

Figure 2. Interfaces positioned between neighboring pressure points and lengths from a pressure point to
the interface.
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l1=Dxi+1/2(1− (Mi, j,k+Mi+1, j,k))
Mi+1, j,k

Mi, j,k+Mi+1, j,k

(5a)

l2=Dxi+1/2(1− (Mi, j,k+Mi+1, j,k))
Mi, j,k

Mi, j,k+Mi+1, j,k

(5b)

Here it is assumed that the liquid volume fraction is constant in a cell with the MDF value
and that the liquid thickness between the two gas cells is calculated by concentrating the liquid
included in those cells. The gas thickness obtained by subtracting the liquid thickness from the
length between those pressure points is divided into two lengths, l1 and l2, with the inverse ratio
of the MDF values. When the sum of l1 and l2 becomes equal to the length between the
pressure points, the two bubbles merge. On the other hand, merging of bubbles can be
prevented by identifying each bubble, which will be described in Section 2.3.5.

2.3.3. Interface boundary conditions. The kinematic interface condition is satisfied by the MDF
method. The dynamic interface conditions for the incompressible fluids are the following
normal and tangential stress boundary conditions:
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where the derivatives of (/(n and (/(s are defined by

(

(n
=n ·9,

(

(s
= t ·9 (6c)

p1 and p2 are the pressures in phase 1 and 2 on the interface respectively, s, k, n and t denote
the surface tension, the curvature of the interface, the unit normal vector and the unit
tangential vector at the interface respectively.

Since the grid step used in our calculations is not sufficiently small to resolve the boundary
layer around a bubble, it is difficult to exactly satisfy Equations (6a) and (6b). Then, the
following simplified equations are satisfied as the dynamic boundary conditions instead of
Equations (6a) and (6b). Equation (7b) is derived from the fact that the velocity gradient in the
gas phase at the interface can be much larger than that in the liquid phase, since the ratio of
the viscosities of the two phases is large and also the interface can be considered as a solid wall
for the gas phase due to the large difference of densities

p1−p2+sk=0 (7a)
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The normal stress boundary condition is implemented in the irregular star technique in the
solution process of the Poisson equation for the liquid phase. Then the surface tension force
is included in the pressure boundary condition. For the pressure boundary condition for the
gas phase the Neumann condition is applied because the interface can be assumed to be a rigid
wall to the gas phase due to the large density difference between the liquid and gas phases. On
the other hand, Equation (7b) is considered by extrapolating the velocity beyond the interface
for each phase when the advection and diffusion terms in the Navier–Stokes equations are
calculated, which will be explained in a subsequent section.

The curvature of the interface is calculated as follows:

k=9 ·n (8a)

where the unit normal vector n to the interface is evaluated from the MDF by

n=
9M

�9M � (8b)

In case other bubbles are close to the interface, the MDF in these bubbles is temporarily set
to 1 while the normal vector and surface curvature are calculated for the interface.

2.3.4. Ad6ection–diffusion term in the Na6ier–Stokes equations near the interface. For the
calculation of the advection–diffusion term, five velocity points in one direction are needed,
and if an interface exists between those points, some extrapolation of velocity beyond the
interface for each phase must be made because the velocity gradient normal to the interface is
different for each phase, as shown in Equation (7b). Therefore, to satisfy Equation (7b) it is
assumed that for the liquid advection–diffusion term, the velocities in the gas phase are
extrapolated from the surrounding liquid velocities so that the normal gradient of velocity to
the interface becomes zero. Figure 3 explains the velocity extrapolation from the liquid side

Figure 3. Velocity extrapolation from the liquid side into the gas side for the advection–diffusion term
at a point in the liquid side.
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into the gas side in two dimensions for simplicity. For the advection–diffusion term at point
1 in Figure 3 the velocity U3 must be extrapolated and is given the same velocity as U1
because the interface between points 1 and 3 is considered to be parallel to the velocity
direction judging from the fact that there is only one velocity (U1) in the liquid phase in the
four velocities neighboring point 3. Velocity U6 is equally extrapolated from U3. For point 2,
velocity U4 is extrapolated by the following equation using two velocities, U2 and U5, to
make the normal velocity gradient to the interface become zero as rigorously as possible:

U4=

1
la

U5+
1
lb

U2

1
la

+
1
lb

Velocity U7 is equally extrapolated from U4. Note that extrapolated velocities are defined
temporarily and used only for the calculation of advection–diffusion term.

For the gas advection–diffusion term close to an interface, the velocity in the liquid phase
two grids from the interface is linearly extrapolated by using the liquid velocity and the gas
velocity on both sides of the interface, because the velocity gradient in the gas phase is not
negligible compared with that in the liquid phase, as indicated in Equation (7b) and the
velocity field must be continuous across the interface. Figure 4 shows an example of the
velocity extrapolation for the component u. For the advection–diffusion term at point 5 the
velocities of U1 and U3 are needed and U3 is the liquid velocity at point 3 and U1 is linearly
extrapolated by using U3 and U5, not the liquid velocity at point 1. The same procedure is
used for point 6.

After obtaining the advection–diffusion term for the phase at each velocity point, the
opposite phase term is needed if an interface exists between the pressure points across the
velocity point. For this case, the advection–diffusion term is extrapolated from the values of

Figure 4. Velocity extrapolation from the gas side into the liquid side for the advection–diffusion term
at a point in the gas side.
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surrounding points in the opposite phase to that of the velocity point. For example, the gas
advection–diffusion term at point 5 in Figure 3, which is necessary for the calculation of
pressure at the gas pressure point between points 4 and 5, is extrapolated from those of points
4 and 8.

2.3.5. Identification of each bubble. For the case containing multiple bubbles, each bubble is
identified by a flag. The identification of each bubble is important for the calculation of
normal vectors when different bubbles are close to each other because the normal vectors for
each bubble must be obtained from the MDF corresponding to that particular bubble
assuming that the region occupied by bubbles is in the liquid. Otherwise, the accuracy of
normal vector calculation is significantly reduced.

In order to prevent bubble merging, the flag identifying each bubble is kept throughout the
computation even if two different bubbles approach and attach. At the same time the length
between the pressure points where the attached interfaces exist is divided into two lengths for
respective phases with the inverse ratio of the MDF values.

3. PROBLEM STATEMENT

The computational domain needed for a channel turbulent flow is 4p×2p×2 for a Reynolds
number of 3300 as chosen by Kim et al. [19]. Then the DNS of a fully developed turbulent
channel flow containing bubbles requires a large number of computational capacities because
the sizes of the bubbles and the turbulent structure are, in general, very different. In this paper
we focus on the case of microbubbles for attaining the drag reduction in a turbulent channel
flow, where the bubble diameter is about 200–700 mm as indicated in experiments by Guin [5]
and Merkle and Deutsch [20]. Since a bubble must be resolved at least in ten grids in all
directions for accuracy, the total number of grid points is considerably larger than that for the
DNS of a single-phase turbulent flow. The computational domain must be reduced to be
marginally sufficient to sustain the turbulent flow. As seen in studies by Jiménez and Moin [21]
and Hamilton et al. [22], the turbulent channel flow can be obtained even in a small domain
and the minimal set of turbulent structures are sustained. They performed simulations with
several computational domains to determine whether turbulent flow can be sustained. Their
investigations indicate that the minimal domain is around 100 wall units in the spanwise
direction and 200 in the streamwise direction. The spanwise critical value corresponds to the
value of the experimentally measured mean streak spacing in the viscous sub-layer.

To simulate the turbulent bubbly flows, the single-phase turbulent channel flow is first
simulated in the minimum computational domain. After steady state flow is obtained, bubbles
are introduced into the flow. The bubble addition to the flow field is achieved by instantaneous
replacing of liquid region into bubbles preserving original velocity and pressure fields.

In this paper we conduct principally two cases with different computational regions. One is
the turbulent Poiseuille flow under the gravitational force with the computational domain of
1×1×1 in the streamwise (x), spanwise (y) and vertical (z) directions. The other is the
turbulent Couette flow with the computational domain of 2×1×2.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 593–615
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4. TURBULENT POISEUILLE FLOW

4.1. Conditions of simulations

In this section Poiseuille turbulent flow simulations are carried out under some different
conditions. The computational domain used here is 1×1×1, and the Reynolds number based
on the channel height, Re, is 3300 and the pressure gradient, (p/(x, of −3.02e−3 is given in
the streamwise direction. Then, the length in one direction of the cubic computational region
corresponds to 180 viscous units. The number of grid points is 64×64×64 in uniform
spacing. No-slip boundary condition is imposed for the bottom wall and free-slip boundary
condition for the top boundary. Other detailed conditions are shown in Table I. Here, We is
the Weber number, Fr is the Froude number, Cf is the frictional coefficient on a wall, r1/r2 is
the density ratio between the two phases. Computations are carried out for the three cases of
a bubbly flow and the Weber and Froude numbers are different for each case. Case TBL1 is
the case without bubbles. The bubble diameter is 0.16 in a non-dimensional scale based on the
channel height and the total void fraction is about 6 per cent. A laminar Poiseuille flow is
given initially and an initial random fluctuation of velocity with magnitude of 0.02 is added to
the laminar velocity to obtain the turbulent flow.

4.2. Turbulent boundary layer without bubbles

The time histories of the averaged frictional coefficient on the bottom wall and the total kinetic
energy are shown in Figure 5 for case TBL1. It can be said that steady state is obtained after
t=525. Then the field data at t=525 for case TBL1 are taken as the initial data for the
turbulent bubbly flow. The time is here re-defined so that t=0 corresponds to the time of
bubble introduction.

4.3. Statistical properties of bubbly flows

Since Poiseuille flow is assumed here for computations, the averaged frictional coefficient
should be balanced with the pressure gradient in the streamwise direction. The effects of the
existence of bubbles cannot appear as drag reduction on the wall, but will be present as the
changes of turbulent properties. The time history of the turbulent energy per unit liquid

Table I. Computational conditions for the turbulent Poiseuille flow under gravitational
force.

TBL4TBL1 TBL2 TBL3

2727270Number of bubbles
3300 3300 3300 3300Re

21.8 108.8 108.8We
1055Fr

−3.02×10−3 −3.02×10−3 −3.02×10−3(p/(x −3.02×10−3

Cf 6.04×10−36.04×10−36.04×10−36.04×10−3

828828828r1/r2
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Figure 5. Time histories of the averaged frictional coefficient on the bottom wall and the total kinetic
energy in the whole computational domain for case TBL1 (Re=3300, Poiseuille flow, no bubbles).

volume is presented in Figure 6 for each case. The turbulent energy for case TBL2 is a whole
smaller compared with that for the flow without bubbles (TBL1) and that for case TBL3 also
seems smaller. However, that for case TBL4 is almost the same as that for case TBL1. It is
interesting to note that the turbulent energy for the case of a smaller Weber number (TBL2)
is more reduced compared with that for the case of a larger Weber number (TBL3). It seems
that the interaction between the bubble-induced turbulence and the wall turbulence can be the
factor for the drag reduction.

Figure 6. Time history of the turbulent energy per unit liquid volume after the introduction of bubbles
at t=0 for cases TBL1 (no bubbles), TBL2 (27 bubbles, We=21.8, Fr=5), TBL3 (27 bubbles,

We=108.8, Fr=5) and TBL4 (27 bubbles, We=108.8, Fr=10); Re=3300.
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The root-mean-square (r.m.s.) velocity fluctuations of the streamwise velocity (u), the
spanwise velocity (6), the vertical velocity (w) in the x-, y-, z-directions respectively, normal-
ized by the wall shear velocity and the distribution of void fraction in the z-direction for each
case, are shown in Figure 7. It is observed as a whole that the velocity fluctuations of 6 and
w for cases TBL2 and TBL3 have a peak value corresponding to the peak of void fraction. It
is also seen that those fluctuations are diminished by almost a half of TBL1 around the region
above 0.3 away from the wall. It is proposed that those velocity fluctuations around the peak
are increased by bubble-induced turbulence and those in the region above 0.3 away from the
wall are decreased due to the interactions between bubbles and the wall turbulence. It is known
from the void fraction that the bubbles for case TBL4 are distributed in all computational
regions and magnitudes of velocity fluctuations of 6 and w are almost the same as for case

Figure 7. R.m.s. velocity fluctuations of u, 6 and w normalized by the wall shear velocity and the
distributions of void fraction along the distance from the wall in wall units at t=50 for cases TBL1 (no
bubbles), TBL2 (27 bubbles, We=21.8, Fr=5), TBL3 (27 bubbles, We=108.8, Fr=5) and TBL4 (27

bubbles, We=108.8, Fr=10); Re=3300.
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TBL1. There is no comprehensive explanation at this moment for the fact that the total
velocity fluctuations of 6 and w are not amplified; although there must exist bubble-induced
turbulence. One possible explanation is that the maximum void fraction is smaller due to the
existence of bubbles in a larger region compared with cases TBL2 and TBL3, i.e., bubbles are
not concentrated in a specific region, and then the interaction between the bubbles and the wall
turbulence is so weak that the turbulence structure near the wall does not change. On the other
hand, the velocity fluctuation of u has a peak value near the wall due to the wall turbulence
but there are some differences between cases. The peak value near the wall for case TBL2
decreases and the total fluctuation diminishes while those for cases TBL3 and TBL4 behave
almost in the same way as that for case TBL1. It seems that the wall turbulence is reduced by
bubbles in case TBL2 in spite of the production of bubble-induced turbulence. It has been
experimentally clarified that the peak of void fraction near the wall is necessary to attain drag
reduction on a wall in a turbulent flow [4,5] and the distribution of void fraction for case TBL2
shows the larger peak value near the wall compared with those for cases TBL3 and TBL4. The
peak is located at about 20 wall units from the wall, which is in the buffer layer. Therefore it
can be proposed that the turbulent energy of case TBL2 is reduced by the existence of bubbles
near the wall, and the r.m.s. of velocity fluctuation of u is also reduced near the wall while
those of 6 and w are increased near the wall due to the bubble-induced turbulence.

Figure 8 presents the profiles of streamwise velocity in wall units. The velocity profile for
case TBL1 indicates that a wall turbulent flow is attained by the code even in a minimum
computational domain since the velocity profile almost accords with the linear sub-layer
relation u+ =z+ and the logarithmic outer layer expressed by u+ =2.5× log(z+)+5. More
detailed observations indicate that the viscous sub-layer part is almost the same for all cases
and correctly agrees with the linear relation while in the outer layer part above the point
z+ =30, the velocity profile exceeds the logarithmic curve due to the numerical error. In the
buffer layer 55z+530, the velocity profile for case TBL2 is different from other cases.

Figure 8. Comparison of streamwise velocity profiles along the distance from the wall in wall units at
t=50 for the cases TBL1 (no bubbles), TBL2 (27 bubbles, We=21.8, Fr=5), TBL3 (27 bubbles,

We=108.8, Fr=5) and TBL4 (27 bubbles, We=108.8, Fr=10); Re=3300.
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4.4. Flow structures for bubbly flows

The statistical characteristics of the bubbly turbulent flow have been shown above and the flow
structure will be discussed below by showing three-dimensional views of the flow structure.
Plate 1 presents the iso-surfaces of the streamwise vorticity corresponding to −2 and +2
values respectively and the bubble shapes for all cases. The most interesting feature is that the
streamwise vorticity in the region away from the wall, where no bubble exists in cases TBL2
and TBL3, is gone, whereas the vorticity exists in the whole computational region in cases
TBL1 and TBL4. It seems that bubbles prevent those large vortical structures due to the wall
turbulence seen in case TBL1 protruding out of the bubble region. It is also observed that the
vortical structures for bubbly flows are changed into sets of smaller structures compared with
those for case TBL1, which is supposed to be due to the bubble-induced turbulence.

The top view of the contours of the streamwise velocity at about z+ =1.5 with bubbles is
presented in Plate 2. It is found that streaks, which are represented as green parts indicating
low speed regions, exist for case TBL1 and the streak spacing is around 100 wall units, which
agrees with the experimental observation of Smith and Metzler [23]. The low-speed streaks
have vanished in case TBL2 while those for case TBL3 have remained in a smaller region and
those in case TBL4 are almost the same as those for case TBL1. It can be said that the smaller
the streaks, the more the turbulent energy is reduced. Even though the bubbles are concen-
trated near the wall for cases TBL2 and TBL3, the streak structures are so different, which is
caused by the different Weber numbers, i.e., the different bubble shapes. Due to the smaller
Weber number for case TBL2, the bubbles almost keep spherical shapes except those near the
wall, which are deformed into ellipsoidal shapes. The bubbles for cases TBL3 and TBL4 are
much more deformed. It is also seen that some bubbles for case TBL3 are attached and
adhered to the wall due to the smaller Weber and Froude numbers.

It has been observed by experiments for drag reduction on the wall in a turbulent flow that
bubble size must be less than around 1 mm to obtain drag reduction. In order to compare the
numerical conditions with experimental ones, Wet based on the wall shear velocity for flow
without bubbles and the bubble diameter are defined here. It is noted from experiments by
Merkle and Deutsch [20] that the wall shear velocities for the turbulent boundary layers
without bubbles are about 0.2 and 0.4 m s−1, corresponding to the freestream velocities of 4.6
and 10.7 m s−1 respectively. The bubble sizes range from 400 to 600 mm at the low-speed
condition and from 200 to 300 mm at the high-speed condition for drag reduction. As the
freestream velocity is larger, the bubble sizes are generally smaller. Then Wet ranges between
about 0.1 and 0.4. Guin [5] conducted experiments for drag reduction for a turbulent channel
flow and showed that the conditions to gain the maximum drag reduction of about 30 per cent
are that: the Reynolds number based on the mean velocity in the channel and the channel
height is 7×104; the frictional coefficient based on the mean velocity is about 0.0044; the wall
shear velocity is around 0.33 m s−1; and Wet is between 0.4 and 0.7, with consideration of the
bubble size ranging principally from 300 to 500 mm. It is also concluded from the above
experiments that as the bubble diameter is small the drag reduction rate is generally larger. It
can be estimated that if the bubble diameter is smaller than the minimum diameter by about
200 mm, a larger amount of drag reduction is obtained. The numerical condition here
corresponds to Wet being about 0.07 and 0.33 for cases TBL2 and TBL3 respectively. By
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considering the above experimental results it is appropriate that the results for case TBL2,
which has a smaller Wet compared with case TBL3, show reduced turbulent energy by
introducing bubbles. It seems that Wet should be less than about 0.4–0.1 to attain drag
reduction, but further investigation about this criterion should be made.

The streamwise vorticity for the flow without bubbles is definitely originated from the
diffusion at the wall. There is no other possibility of generating original circulation. Plate 3
shows the iso-surface of the spanwise vorticity with the value of −3 at t=50 for cases
TBL1 and TBL2, and it is observed in case TBL1 that the shear vorticity layer is detached
from the wall above the low-speed streaks as it tends to roll up. The streak appears to be
the result of the detachment of the shear layer as is also pointed out by Jiménez and Moin
[21]. Figure 9 contains the contours of the spanwise vorticity and streamwise vorticity in a
cross-section at the same position at t=50 for case TBL1. It is obvious that a streamwise
vorticity is likely to be produced at the position where the spanwise shear vorticity is rolled
up. It is observed from Plate 3 that the structure of shear vorticity layer is completely
destroyed by the existence of bubbles in case TBL2. It is proposed that the most important
reason for the fact that the streamwise vorticity vanishes above the region where bubbles
exist near the wall and that there is no low-speed streak is the destruction of the structure
of shear vorticity layer.

Figure 9. Contours of the spanwise vorticity and the streamwise vorticity in a cross-section at t=50 for
case TBL1 (no bubbles). The interval is 1 and the solid and dotted lines denote plus and minus values

respectively.
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5. TURBULENT COUETTE FLOW

5.1. Conditions of simulations

In this section the simulation of the turbulent Couette flow containing 108 bubbles is carried
out in a larger computational domain than that for the previous examples. The total void
fraction is about 6 per cent, which is just the same as previous examples containing 27 bubbles.
The computational domain is 2×1×2 in the x-, y- and z-directions respectively. The number
of grid points is 130×65×125 and the grid spacing for the x- and y-directions is uniformly
distributed at 0.0164 in the non-dimensional units and non-uniform grids are used in the
z-direction near the wall with cosine distributions until the grid spacing exceeds 0.0164
followed by uniform spacing. The minimum grid spacing in the z-direction is 0.00197. Periodic
boundary conditions are imposed in the x and y-directions and no-slip boundary conditions on
both end walls in the z-direction. The origin of the z-direction is placed at the center of the
channel. No-slip boundary condition is imposed on both walls. No gravitational forces act in
the simulation. The detailed conditions are presented in Table II. Re is based on the channel
half height.

5.2. Turbulent boundary layer without bubbles

The steady state turbulent Couette flow is obtained in the same way as the turbulent Poiseuille
flow in the previous section. The frictional coefficient at the steady state is around 0.0018, thus
the minimum grid spacing in the z-direction closest to the wall is about 0.2 wall units, which
is sufficiently small to resolve the viscous sub-layer. The maximum grid spacing in the
computational domain is about 1.6 wall units, which is smaller than the Kolmogorov scale of
2 wall units. The grid used here is sufficiently fine to resolve the turbulent structures by DNS.

5.3. Statistical properties for bubbly flows

As described previously one of the objectives of this paper is to clarify the mechanism of drag
reduction by injecting microbubbles and some new understandings to the problem have been
presented in Section 4. Since a Couette flow is assumed here, the drag reduction can be
attained if the computational conditions are appropriate. Wet, defined previously, based on the
wall shear velocity and the bubble diameter is about 0.1, which is calculated using the obtained
frictional coefficient in Figure 10 for case TBL5. Then it can be said that Wet is in the range
for drag reduction from experiments and is also almost the same as that for case TBL2.

Table II. Computational conditions for a turbulent Couette flow without
gravity.

TBL5 TBL6

1080Number of bubbles
Re 3300 3300
We 108.8

0(p/(x 0
r1/r2 828
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Figure 10. Time histories of the frictional coefficients on the top and bottom walls for cases TBL5 (no
bubbles) and TBL6 (108 bubbles, We=108.8); Re=3300.

Figure 10 shows the time histories of the frictional coefficients on the top and bottom walls
for cases TBL5 and TBL6. It is indicated that the frictional resistance for case TBL6 is reduced
after t=40 compared with that for case TBL5; the reduction on the top wall is considerably
large.

Accompanying the drag reduction on the walls, the turbulent energy per unit liquid volume
is also reduced as shown in Figure 11 in the range of time between t=40 and 90, which
corresponds to the time when a sudden increase of turbulent energy for case TBL5 occurs as
pointed out previously, i.e., the effects of the introduction of bubbles appear as the deletion of
the sudden increase of turbulent energy. Also, the volume flow rate is increased by the
introduction of bubbles and the reduction of turbulent energy as shown in Figure 12.

Figure 11. Time history of the turbulent energy per unit liquid volume for cases TBL5 (no bubbles) and
TBL6 (108 bubbles, We=108.8); Re=3300.
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Figure 12. Time history of the volume flow rate for cases TBL5 (no bubbles) and TBL6 (108 bubbles,
We=108.8); Re=3300.

Figure 13 shows the r.m.s. velocity fluctuations of u, 6 and w at t=80 normalized by the top
and bottom wall shear velocities for the positive and negative parts of z respectively for cases
TBL5 and TBL6. No significant differences are seen in the r.m.s. velocity fluctuations of 6 and
w between cases TBL5 and TBL6 at t=80. However, in the distributions of r.m.s. velocity
fluctuation of u, the fluctuation for case TBL6 near the top wall is significantly reduced against
that for case TBL5, while that for case TBL6 near the bottom wall is increased.

Figure 14 shows the distribution of the turbulent energy per unit liquid volume along the
z-direction indicating that the turbulent energy near the top wall is dramatically reduced due
to the concentration of bubbles. It has been experimentally clarified that the most important
factor for the reduction of frictional resistance is bubbles concentrated near the wall, which was
also shown for case TBL2. Figure 15 presents the distributions of the void fraction along the
z-direction at t=0 and 80 for case TBL6. As was estimated, the void fraction shows the peak
value near the top wall at t=80 while the void fraction is relatively small near the bottom wall.
The peak near the top wall is located at about 18 wall units from the top wall, which is in the
buffer layer in the same way as case TBL2. It can be concluded that the turbulent energy is
reduced if the void fraction is sufficient, while in contrast it is increased if the void fraction is
insufficient.

The streamwise velocity profile normalized by the wall shear velocity is shown in Figure 16.
In the viscous sub-layer below z+ =5 on both walls, the simulated results agree well with
u+ =z+ for both cases TBL5 and TBL6. The most remarkable change in the profile at t=80
for case TBL6 is that the buffer region is changed near the top wall in the same way as for case
TBL2, which can be related to the reduced frictional resistance on the wall.

5.4. Flow structures for bubbly flows

The flow structure is investigated here by showing the three-dimensional flow field. First, the
whole computational domain at t=80 for case TBL6 is presented with 108 bubble shapes in
Figure 17.
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Figure 13. R.m.s. velocity fluctuations of u, 6 and w normalized by the top and bottom wall shear
velocities for the positive and negative parts of z respectively at t=80 for cases TBL5 (no bubbles) and

TBL6 (108 bubbles, We=108.8); Re=3300.

The contour of the frictional coefficient on the top wall at t=80 is shown in Plate 4. It is
found that the low-speed streak, which corresponds to the low frictional coefficient, exists in
case TBL5 while that for case TBL6 disappears. It is also obviously known by comparing
between cases TBL5 and TBL6 that the frictional resistance for case TBL6 is much diminished
due to the existence of bubbles, since the high frictional part, which is the dense part, appeared
on the wall for case TBL5 and disappears in case TBL6.

Plate 5 presents the iso-surface of the spanwise vorticity with −2 value near the top wall
and the contour of the streamwise velocity on the top wall. The spanwise vorticity for case
TBL5 forms a sheet-like surface and detaches away from the wall above the low-speed streak,
which was also observed in case TBL1. The sheet-like spanwise vorticity is disrupted by the
bubbles in case TBL6.
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Figure 14. Distribution of the turbulent energy per unit liquid volume along the z-direction at t=80 for
cases TBL5 (no bubbles) and TBL6 (108 bubbles, We=108.8); Re=3300.

Figure 15. Distribution of the void fraction along the z-direction at t=0 and 80 for case TBL6 (108
bubbles, We=108.8); Re=3300.

The iso-surfaces of the streamwise vorticity with −1 and +1 values are presented with the
bubble shapes and the contour of the streamwise velocity on the top wall in Plate 6. It is seen
that the streamwise vorticity in the case without bubbles emerges from the wall just near the
detachment point of the spanwise vorticity from the wall. As was suggested in Section 4, the
streamwise vorticity seems to be generated from the detachment of spanwise vorticity away
from the wall with rolling-up motion above low-speed streaks. It is proposed that the
streamwise vorticity is weakened by the destruction of spanwise vorticity as seen in case TBL6
in which the structure of the streamwise vorticity becomes smaller compared with that for the
case TBL5 and seems to be generated mainly by bubble-induced turbulence not by the wall
turbulence.
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Figure 16. Streamwise velocity profiles normalized by the top and bottom wall shear velocities for the
positive and negative parts of z respectively at t=80 for cases TBL5 (no bubbles) and TBL6 (108

bubbles, We=108.8); Re=3300.

Figure 17. The whole computational domain and 108 bubble shapes for case TBL6 (108 bubbles,
We=108.8); Re=3300.
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6. CONCLUSIONS

The MDF method has been successfully applied to turbulent bubbly flows to investigate the
flow structure. The present numerical experiments have clarified a variety of the flow structure
and the mechanism associated with the phenomenon of drag reduction by injecting microbub-
bles into the turbulent boundary layer. The findings of this study are summarized as follows.

In the cases of a turbulent Poiseuille flow the turbulent energy is reduced on the condition
of We=21.8 and Fr=5, while in other cases it is not achieved. The void fraction has a peak
near the wall and the streamwise velocity fluctuation in the buffer layer near the wall is
reduced when the turbulent energy is reduced due to the existence of bubbles, which is
supposed to indicate that the interaction between the bubbles and the wall turbulence near the
wall contributes to the reduction of the turbulent energy. Note that it has been clarified from
experiments that it is necessary to concentrate bubbles near the wall as much as possible to
attain the drag reduction on the wall. On the other conditions of the larger Weber number and
the larger Foude number, the reduction of the turbulent energy is smaller or not achieved due
to the different bubble shapes or the dispersed bubbles in the whole computational domain.
The velocity profile normalized by the wall shear velocity indicates that the profile in the buffer
layer is changed on the condition when the turbulent energy is reduced.

The turbulent Couette flow simulation containing 108 bubbles is also carried out. Since no
pressure gradient in the streamwise direction is given, the reduction of frictional drag has been
attained. It is also indicated that the peak of the void fraction distribution near the wall where
the drag reduction is attained locates about 18 wall units away from the wall and the velocity
profile normalized by the wall shear velocity is changed in the buffer layer in the same way as
the case of the turbulent Poiseuille flow.

The mechanism of drag reduction from the viewpoint of flow structures can be deduced
from the above numerical tests in the following way. The observation of the vortical structure
indicates that the sheet-like structure of the spanwise vorticity near the wall is prevented from
being formed by the existence of bubbles, the streamwise vorticity, which is considered to be
created from the spanwise vorticity detaching from the wall, is weakened, i.e., the bursting
phenomenon of turbulence is depressed. Accordingly, the low-speed streaks below the detach-
ment position of the spanwise vorticity disappear. The turbulent energy is reduced and the
drag reduction is attained.

To clarify the mechanism of drag reduction and the interaction between bubbles and wall
turbulence completely, DNS with full computational region of the turbulent channel flow
should be conducted for further study because the computational ability is dramatically
increased by parallel computing and so on.
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Plate 1. Iso-surfaces of the streamwise vorticity corresponding to −2 and +2 values respectively and
the bubble shapes represented as gray surfaces at t=50 for the cases TBL1 (no bubbles), TBL2 (27
bubbles, We=21.8, Fr=5), TBL3 (27 bubbles, We=108.8, Fr=5) and TBL4 (27 bubbles, We=108.8,

Fr=10); Re=3300.
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Plate 2. Contours of the streamwise velocity on the plane of about z+ =1.5 and bubble shapes at t=50
for cases TBL1 (no bubbles), TBL2 (27 bubbles, We=21.8, Fr=5), TBL3 (27 bubbles, We=108.8,

Fr=5) and TBL4 (27 bubbles, We=108.8, Fr=10); Re=3300.
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Plate 3. Iso-surface of the spanwise vorticity corresponding to −3 value and bubble shapes at t=50 for
cases TBL1 (no bubbles) and TBL2 (27 bubbles, We=21.8, Fr=5); Re=3300.

Plate 4. Contour of the frictional coefficient on the top wall at t=80 for cases TBL5 (no bubbles) and
TBL6 (108 bubbles, We=108.8); Re=3300.
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Plate 5. Iso-surface of the spanwise vorticity with −2 value near the top wall and the contour of the
streamwise velocity on the top wall at t=80 for cases TBL5 (no bubbles) and TBL6 (108 bubbles,

We=108.8); Re=3300.

Plate 6. Iso-surfaces of the streamwise vorticity with −1 and +1 values near the top wall and the
contour of the streamwise velocity on the top wall at t=80 for cases TBL5 (no bubbles) and TBL6 (108

bubbles, We=108.8); Re=3300.
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